Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38396896

RESUMEN

Late cardiotoxicity is a formidable challenge in anthracycline-based anticancer treatments. Previous research hypothesized that co-administration of carvedilol (CVD) and dexrazoxane (DEX) might provide superior protection against doxorubicin (DOX)-induced cardiotoxicity compared to DEX alone. However, the anticipated benefits were not substantiated by the findings. This study focuses on investigating the impact of CVD on myocardial redox system parameters in rats treated with DOX + DEX, examining its influence on overall toxicity and iron metabolism. Additionally, considering the previously observed DOX-induced ascites, a seldom-discussed condition, the study explores the potential involvement of the liver in ascites development. Compounds were administered weekly for ten weeks, with a specific emphasis on comparing parameter changes between DOX + DEX + CVD and DOX + DEX groups. Evaluation included alterations in body weight, feed and water consumption, and analysis of NADPH2, NADP+, NADPH2/NADP+, lipid peroxidation, oxidized DNA, and mRNA for superoxide dismutase 2 and catalase expressions in cardiac muscle. The iron management panel included markers for iron, transferrin, and ferritin. Liver abnormalities were assessed through histological examinations, aspartate transaminase, alanine transaminase, and serum albumin level measurements. During weeks 11 and 21, reduced NADPH2 levels were observed in almost all examined groups. Co-administration of DEX and CVD negatively affected transferrin levels in DOX-treated rats but did not influence body weight changes. Ascites predominantly resulted from cardiac muscle dysfunction rather than liver-related effects. The study's findings, exploring the impact of DEX and CVD on DOX-induced cardiotoxicity, indicate a lack of scientific justification for advocating the combined use of these drugs at histological, biochemical, and molecular levels.


Asunto(s)
Ascitis , Cardiotoxicidad , Ratas , Animales , Carvedilol/farmacología , NADP/metabolismo , Cardiotoxicidad/metabolismo , Ascitis/patología , Doxorrubicina/uso terapéutico , Miocardio/metabolismo , Antibióticos Antineoplásicos/uso terapéutico , Hierro/metabolismo , Peroxidación de Lípido , Hígado/metabolismo , Transferrina/metabolismo , Peso Corporal
2.
Artículo en Inglés | MEDLINE | ID: mdl-37594247

RESUMEN

A 60-year-old female with heart failure with reduced left ventricle ejection fraction, implantable cardiac defibrillator and left bundle branch block was admitted to Department of Cardiology for cardiac resynchronization therapy defibrillator upgrade. Due to difficulties with advancement of left ventricular lead to lateral coronary vein, balloon angioplasty with use of retrograde approach via collateral branches and two CS sheaths positioning was performed. Final position of lead in lateral vein was achieved resulting with pacing threshold of 0.7 V/0.5 ms, impedance of 720 Ω and QRS of 130 ms.

3.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37373350

RESUMEN

The anticancer efficacy of doxorubicin (DOX) is dose-limited because of cardiomyopathy, the most significant adverse effect. Initially, cardiotoxicity develops clinically silently, but it eventually appears as dilated cardiomyopathy with a very poor prognosis. Dexrazoxane (DEX) is the only FDA-approved drug to prevent the development of anthracycline cardiomyopathy, but its efficacy is insufficient. Carvedilol (CVD) is another product being tested in clinical trials for the same indication. This study's objective was to evaluate anthracycline cardiotoxicity in rats treated with CVD in combination with DEX. The studies were conducted using male Wistar rats receiving DOX (1.6 mg/kg b.w. i.p., cumulative dose: 16 mg/kg b.w.), DOX and DEX (25 mg/kg b.w. i.p.), DOX and CVD (1 mg/kg b.w. i.p.), or a combination (DOX + DEX + CVD) for 10 weeks. Afterward, in the 11th and 21st weeks of the study, echocardiography (ECHO) was performed, and the tissues were collected. The addition of CVD to DEX as a cardioprotective factor against DOX had no favorable advantages in terms of functional (ECHO), morphological (microscopic evaluation), and biochemical alterations (cardiac troponin I and brain natriuretic peptide levels), as well as systemic toxicity (mortality and presence of ascites). Moreover, alterations caused by DOX were abolished at the tissue level by DEX; however, when CVD was added, the persistence of DOX-induced unfavorable alterations was observed. The addition of CVD normalized the aberrant expression of the vast majority of indicated genes in the DOX + DEX group. Overall, the results indicate that there is no justification to use a simultaneous treatment of DEX and CVD in DOX-induced cardiotoxicity.


Asunto(s)
Cardiomiopatías , Dexrazoxano , Masculino , Ratas , Animales , Dexrazoxano/farmacología , Dexrazoxano/uso terapéutico , Antraciclinas/efectos adversos , Carvedilol/farmacología , Carvedilol/uso terapéutico , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Ratas Wistar , Antibióticos Antineoplásicos/toxicidad , Cardiomiopatías/inducido químicamente , Cardiomiopatías/prevención & control , Cardiomiopatías/tratamiento farmacológico , Doxorrubicina/farmacología , Inhibidores de Topoisomerasa II/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...